SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: Thermodynamics & Heat Engines (18ME0350)

Branch: B.Tech - AGRI

Regulation: R18

Year & Sem: II-B. Tech & II-Sem

<u>UNIT –I</u>

BASIC CONCEPTS

b	What is quasi static process? What are its characteristics features?	I 1	73 6
2			5M
2	Explain the following		
	a) Enthalpy b) Internal Energy c) Specific heat d) Thermodynamic	L2	10M
	cycle		
3	Explain thermodynamics system, surrounding and universal. Distinguish		
	between closed, open, isolated homogenous and heterogeneous systems.	L2	10M
	Illustrate with examples		
4 a	Explain about Thermodynamic Equilibrium	L2	5M
b	What is the difference between a closed system and an open system?	L1	5M
5 a	Explain about Quasi Static Process.	L2	5M
b	What do mean by property"? Distinguish between intensive and extensive	L1	5M
6 a	Differentiate between the cyclic process and non-cyclic process	L4	5M
b	State the following	12	5M
	b) Pressure b) Temperature c) volume d) Density	L	5111
7 a	What do you understand by path function and point function? What are the	ТЛ	5M
	exact and inexact differentials?	L	5111
b	State the thermodynamic system control volume.	L2	5M
8	What is meant by thermodynamics equilibrium? Explains its types briefly.	L1	10M
9	State the differences between heat and work.	L2	10M
10	Explain the following terms	L2	
	a) State		2M
	b) Path		2M
	c) Process		2M

	d)	Cyclic process	2M
	e)	System.	2M

<u>UNIT – II</u> ZEROTH LAWS OF THERMODYNAMICS

1	a)	State first law the system.	w of thermodynamics. I	Prove that internal er	nergy is a property of	L2	5M
	b)	In a cycle which has five processes, the following are the heat transfers at five points. $Q_1 = +50$ KJ, $Q_2 = 85$ KJ, $Q_3 = -30$ KJ, $Q_4 = -70$ KJ and $Q5 = +135$ KJ, the work transfers are $W_1 = +60$ KJ, $W_2 = -40$ KJ, $W_3 = 35$ KJ, $W_4 = -20$ KJ and $W5 = +135$ KJ. Find out the work transfer at the fifth point					5M
2	a)	Derive Stead	y Flow Energy Equation	n for Turbine		L4	5M
	b)	A turbine op an enthalpy is lost to the flows though	perates under steady floo of 2786 KJ/Kg and leav e surroundings at the r n the turbine is 0.40Kg/s	w conditions, receives with an enthalpy rate of 5.30 KJ/sec. sec. Find the power	ing the steam having of 2513 KJ/Kg. Heat If the rate of steam output of the turbine.	L3	5M
3		A system un	ndergoes a cycle comp	oosed of four proce	sses and the energy		
		Process	tabulated below. Heat transfer in KJ/min	Work done in KJ/min	Change in internal energy KJ/min	13	10M
		1-2	550	230	-	LJ	10111
		2-3	230	-	380		
		3-4	-550	-	-		
		4-1	0	70	-		
		a) Comp	blete the table and b)	determine rete of wo	ork in KW.		
4		its volume i 750KN/m ² . KJ. Calculate	ncreases from 0.004 r Fhe heat supplied throute the change in internal	n^{3} to 0.034 m^{3} at 1 agh the walls of cyli 1 energy of the system	constant pressure of nder the process is 8	L3	10M
5	a)	The air in a system expands from a temperature of 60° C to 300° C at a constant pressure of 2 bars. Calculate the heat transfer, work done and change in internal energy. The mass of the air is 0.6 Kg. Assume C _p =1.02 KJ/Kg ^K and C _v = 0.71 KJ/Kg ^K for air.					5M
	b)	State second	law of thermodynamics	5		L2	5M
6	a)	Derive Stead	y Flow Energy Equatio	n for Nozzle		L4	5M
	b)	The enthalpy enthalpy of 2 velocity of st	y of a steam 3015.6 K. 2819.8 KJ/Kg. Calculat team at the entry is 50 n	J/Kg enters a nozzle e the velocity of ste n/sec	e and leaves with an am at the exit, if the	L3	5M
7	a)	What are the	different modes in whi	ch energy is stored i	n a system	L1	5M

	b)	Derive Steady Flow Energy Equation for compressor	L4	5M
8	a)	During a cycle consisting of four processes, the heat transfer are a s following. $Q1 = +60$ KJ, $Q_2 = -40$ KJ, $Q_3 = 15$ KJ, and $Q_4 = -20$ KJ, Determine the net work done by the system.	L3	5M
	b)	Explain the Specific heat capacities ($C_P \& C_v$),	L2	5M
9	a)	Define Mass Balance? Derive equation for it.	L1	5M
	b)	What is Steady Flow Process? Derive SFEE for any one engineering system	L1	5M
10		Explain the following terms	L2	
	a)	First law Thermodynamic		2M
	b)	Energy is a Property		2M
	c)	Zeroth law of thermodynamics		2M
	d)	Enthalpy		2M
	e)	Specific heat capacities ($C_P \& C_v$)		2M

<u>UNIT – III</u> Law of Perfect Gas

1	a)	What is Avogadro's law?	L1	5M
	b)	State Internal Energy and Enthalpy of Gas	L2	5M
2	a)	What is the gas equation of ideal gas?	L1	5M
	b)	State Dalton's law of partial pressures	L2	5M
3	a)	Explain the differences between isothermal and adiabatic processes.	L2	5M
	b)	One kg of air in a closed system, initially at 5°C and occupying $0.3m^3$ volume, undergoes a constant pressure heating process to 100°C. There is no work other than <i>pdv</i> work. Find (a) the work done during the process, (b) the heat transferred, and (c) the entropy change of the gas.	L3	5M
4	a)	Draw P –V and T-S diagrams on Isochoric process and Isobaric process with derive the (i) work done (ii) heat transfer (iii) internal energy.	L4	5M
	b)	Air contained in a cylinder fitted with a piston is compressed reversibly according to the law $pv1.25 = const$. The mass of air in the cylinder is 0.1 kg. The initial pressure is 100 kPa and the initial temperature 20°C. The final volume is 1/ 8 of the initial volume. Determine the work and the heat transfer.	L3	5M
5	a)	2.5 kg of gas with an initial volume 1.2 m^3 is cooled at constant pressure of 799 KN/m ² . The temperature at the end of cooling is 287 ⁰ c. determine (i)	L3	5M

		the change in internal energy (ii) work done (iii) heat transfer take R= 0.32		
		KJ/kg^k and cp=1.16 KJ/kg^k .		
	b)	Determine the final temperature, external work done, change in internal		
		energy, in the case of 2 kg of gas at 20° c being heated at constant volume	L3	5M
		until the pressure is doubled.		
6	a)	Sketch the following processes on P-V and T-S diagrams (a) constant	т. 4	
		volume (b) constant pressure (c) constant temperature (d) isentropic process	L4	5M
		(e) polytropic process.		
	b)	In a closed vessel a certain quantity of gas is heated from 200 KN/m^2 to 500		
		KN/m^2 . If the volume of the vessel is 5000 liters find the quantity of i) heat	L3	5M
		transfer ii) change in internal energy iii) work done. $c_p = 1.005 \text{ KJ/kg}^{\kappa}$ and c_v		0111
		$=0,715 \text{ KJ/kg}^{\kappa}$.		
7	a)	Derive an expression for work done during isothermal process.	L4	5M
	b)	0.2 kg of air at pressure of 1.1 bar and 15° c is compressed isothermally to a		
		pressure of 5.5 bar. Calculate (i) final volume (ii) heat rejected (iii) change in	L3	5M
		internal energy. Assume $R = 0.292 \text{ KJ/Kg}^{K}$		
8	a)	Derive an expression for work done during isentropic process.	L4	5M
	b)	Air in a closed stationary system expands in a reversible adiabatic process		
		from 0.5 MPa, 15°C to 0.2 MPa. Find the final temperature, and per kg of	L3	5M
		air, the heat transferred, and the work done.		
9	a)	Air at 1 bar and 40 0c is compressed to 1/10 th the original volume		
		isentropically. Determine the final pressure and temperature and the	L3	5M
		workdone on 1 m3 of air. Assume $R = 0.287 \text{ KJ/Kg}^{K}$ and $pv^{1.4} = c$.		
	b)	Derive an expression for heat transfer during polytropic process	L4	5M
10		Explain the following terms	L4	
	a)	Constant pressure process		2M
	b)	Constant volume process		2M
	c)	Constant temperature process		2M
	d)	Non flow process		2M
	e)	Flow process		2M

<u>UNIT – IV</u> THERMODYNAMIC CYCLES

1	a)	Find the change in enthalpy steam, initial pressure 10 bar and 0.98 then it will reach 20 bar and 350 temperature. By using steam tables.	L1	5M
	b)	Explain Limitations of Carnot cycle.	L4	5M
2		A power plant operating between 30 bars and 0.02 bars. If the steam supplied is 350^{0} C and the cycle of operation is Rankine, Find (i) cycle efficiency, (ii) change in enthalpy.	L5	10M

3	a)	Explain the P-V, P-T, T-S diagrams of Pure Substances	L4	5M
	b)	Derive an expression for thermal efficiency & mean effective pressure of a dual combustion cycle by drawing PV and TS diagrams.	L4	5M
4		An engine working on the otto cycle is supplied with air at 0.1 MPa ,350C .the compression ratio is 8.the heat supplied is 2100 kJ/kg .calculate the Maximum pressure and temperature of the cycle ,the cycle efficiency and the mean effective pressure.(for air Cp=1.005kj/kg. k , Cv = 0.717 kJ/kgk, and R=0.287 kJ/kgk)	L3	10M
5	a)	Derive an expression for the thermal efficiency of Sterling cycle and draw P-V & T-S diagrams	L4	5M
	b)	Find the change in enthalpy steam, initial pressure 15 bar and 0.95 then it will reach 25 bar and 400 temperature. By using mollier diagram.	L3	5M
6		Derive an expression for the thermal efficiency of Ericson cycle and draw P- V & T-S diagrams	L5	10M
7	a)	Derive an expression for the thermal efficiency of Carnot cycle and draw P- V & T-S diagrams	L5	5M
	b)	Find the change in enthalpy steam, initial pressure 5 bar and 0.98 then it will reach 10 bar and 250 temperature.	L3	5M
8		Derive an expression for the thermal efficiency of Diesel cycle and draw P- V & T-S diagrams.	L5	10M
9	a)	Derive an expression for the thermal efficiency and mean effective pressure of an Otto cycle by drawing PV and TS diagrams	L5	5M
	b)	Find the change in enthalpy steam, initial pressure 5 bar and 200 ^o c then it will reach 0.95 in isentropic process.	L3	5M
10		Explain the following terms	L2	
	a)	Dry saturated steam		2M
	b)	Wet steam		2M
	c)	Enthalpy of super-heated steam		2M
	d)	Enthalpy of wet steam		2M
	e)	Saturated temperature		2M

<u>UNIT – V</u> <u>Steam Boilers</u>

1	a)	Explain Drum less Boiler, with neat sketch?	L2	5M
	b)	Explain with neat sketch any one of the fire tube boiler?	L2	5M
2	a)	Explain the following boiler terms: shell, grate, furnace, fire hole, mud hole, ash pit,	L2	5M
	b)	Give the construction and working principal of la-mount boiler.	L4	5M
3	a)	Write short note on the followings(i) Supercharged boiler(ii) Supercritical boiler		5M

	1			
	b)	Explain with neat sketch "Bob cock and Wilcox" boiler?.	L2	5M
4	a)	How are boiler classified?	L4	5M
	b)	Give the Comparison between fire tube and water tube Boiler.	L4	5M
5	a)	Enumerate the factors which should be considered while selecting a boiler.	L5	5M
	b)	What are the essentials of a good boiler?	L5	5M
6		Explain the terms with neat sketch. (i) Fusible plug, (ii) feed check valve, (iii) Water level Indicator,	L2	10M
7		Explain the terms with neat sketch. (i) Economizer, (ii) Air preheater, (iii) Convective super heater	L2	10M
8	a)	What are the advantages of artificial draughts over the natural draught ?	L2	5M
	b)	Explain with neat sketch of Fire Tube boiler- Cochran boiler	L2	5M
9		Explain with neat sketch of Water Tube boiler- Babcock and Wilcox Boiler	L4	5M
		Explain with neat sketch any one Modern High Pressure Boilers	L4	5M
10		Explain the following terms	L2	
	a)	Inlet water temperature		2M
	b)	Boiler pressure		2M
	c)	Evaporative temperature		2M
	d)	Pressure gauge		2M
	e)	Boiler mountings		2M

Prepared by: J Suresh